Selected Publications are listed here.

See full publications in full CV and

  • google-scholar-logo-transparent-png-goog

* indicates that I am also the corresponding author

Origin of Life / autocatalytic set

All life on Earth, probably all life in general, is able to replicate itself. We provide a general model to explain how a set of non-self-replicating chemical reactions coupled together into a system which is able to self-replicate as a whole.

We find specific chemical systems that exhibit self-replication and show that these systems are common and emerge often. These results start to explain the origins of prebiotic evolution.

Y. Liu*, On the definition of a self-sustaining chemical reaction system and its role in heredity, Biology Direct, 15(15), 2020.

Y. Liu*, D. Hjerpe and T. Lundh, Side reactions do not completely disrupt linear self-replicating chemical reaction systems, Artificial Life 26(3): 327-337, 2020. (Full text)

Y. Liu*, and D. Sumpter, Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems, J. Biological Chemistry 293(49), 18854-18863, 2018.

Y. Liu*, and D. Sumpter, Is the golden ratio a universal constant for self-replication? PLOS ONE 13(7), e0200601, 2018.

Artificial Ecosystem

Community ecosystems at very different levels of biological organisation often have similar properties. We develop a bottom-up model of consumer–resource interactions, in the form of an artificial ecosystem "number soup", which reflects basic properties of many bacterial and other community ecologies. 


For example, 1) communities self-organise so that all available resources are fully consumed; 2) the evolved ecosystems are often "robust yet fragile", with keystone species required to prevent the whole system from collapsing; 3) a useful ecological concept---species loop---could be developed, which can be considered as a higher level unit of selection than individual species.

Y. Liu*, and D. Sumpter, Insights into resource consumption, cross-feeding, system collapse, stability and biodiversity from an artificial ecosystem, J. R. Soc. Interface, 14(126), 20160816, 2017.

Y. Liu*, The artificial ecosystem: number soup (part II), arXiv:1801.04916, 2018.

Other projects involved

Resonance algorithm

A new algorithm for the shortest path problem

Biochemical cellular processes

Collective animal behaviour

Magnetic confinement fusion

Copyright © 2020 吴亦尘. All Rights Reserved.